

A Detail Qualitative Survey on Attacks in Mobile Ad-hoc Networks (MANET)

Himanshi¹, Mintu Singh²

M-Tech. Student, Department of CSE, Echelon Institute of Technology, Faridabad, India¹

Assistant Professor Department of CSE, Echelon Institute of Technology, Faridabad, India²

Abstract: Mobile ad hoc networks (MANET) has risen as a major next generation wireless networking technology. This network is a network of mobile nodes with dynamic structure. Here each node acts as a router for forwarding data to other nodes. Due its dynamic nature, security has become a primary concern to provide protected communication between different nodes in ad hoc networks. There are a number of challenges in security design as ad hoc network is a decentralized network. There are five layers in MANET and each of these layer is vulnerable to various attacks. In this paper we discuss about various attacks and their protection mechanisms.

I. INTRODUCTION

Wireless networks are classified into two broad categories: infrastructure less networks and infrastructure based networks. The infrastructure based networks can make the use of fixed base stations which are responsible for coordinating communication among two or more mobile hosts. Infrastructure less wireless networks is a type of network of mobile nodes with no central coordinator. MANET (Mobile ad-hoc network) comes under the category of infrastructure less or non-infrastructure wireless networks.

The term ad-hoc means temporary i.e. a mobile ad-hoc network is a temporary network of various mobile nodes without any central coordinator [1]. These networks do not depend on any hardware. A MANET is a self-governing network in which each node acts as a router to forward message to other node that are not within the same communication range. MANET follows a dynamic topology because every node always moves arbitrarily in the network [2].

Therefore, a node can change its link to other node frequently. Because of dynamic topology MANET has various applications such as in military area, rescue operations, natural disaster recovery etc. apart from these MANET can also install in the office, home or a small area of city. Though, MANET supports mobility and portability but is more vulnerable and susceptible to various types of security attacks. MANET not only inherits all the security attacks found in both wired and wireless networks, but it also introduces some of the security attacks unique to itself.

With the knowledge of some commonly used attacking schemes, a researcher might have a better understanding of how mobile ad hoc networks could be susceptible to the attackers, and thus leads to the development of more reliable security measures in protecting them [2]. The main aim of this study is to inspect some of the important issues that might be related to security attacks in MANET and some of the existing detection and mitigation schemes [3].

Figure: 1 Mobile Ad-hoc Networks

II. ATTACKS IN MANETS

Mobile ad-hoc networks are vulnerable to numerous attacks not only from outside but also from inside i.e. within the network. The attacks in MANET are divided into two major categories:

Fig :Types of attack

A. Active Attacks

Active attacks disturb the operation of communication in the network. Anactive attack could stop the message flow between the nodes. An active attack can modify the data packet or drop the packet in the network. Hence active attacks disturb the normal functionality of a MANET.

Fig: Active - Passive attacks

Attacks at MAC Layer

1.) Jamming attack

Jamming attack is a type of denial of service attack. Jamming attack uses the term jammer. Jammer can be defined as an individual entity which intentionally blocks the methods of legal wireless communication. It comes under active attack due to its actions. In jamming attack, a radio signal is jammed or interfered which causes the message to be lost or corrupted. The attacker node having a powerful transmitter causes that the generated signal will be strong enough to damage the communications and can easily crush the targeted signal [5]. This attack is originated after determining the communication frequency.

Attacks at Network Layer

1.) Blackhole attack

In this attack, attacker node announces that it has an optimum route to the node whose packet it wants to use. On receiving side, attacker node sends a fake reply with extremely short route. If the node has been able to make its place between the communicating nodes, then it can do anything with the packets passing between them [1]. A black hole node acts as having a path with the highest sequence number to the destination. The black hole node falsely advertises the shortest path to the destination node in order to absorbs data packets and drop them [1].

Fig :Blackhole attack

2.) Greyhole attack

Greyhole attack is a special kind of blackhole attack. In this attack, an attacker becomes the part of the routes in the network i.e. captures the route then drops data packets selectively [2]. One can't predict the probability of losing data packets. In greyhole attack, attacker node first agrees to forward packets and then refuses to do so, which leads to dropping of data packets.

The Gray Hole attack has two phases: In the first phase, an attacker node exploits the AODV protocol to act as having a valid route to the destination node, with the goal of interrupting data packets, even though the route is spurious. In the second phase, the attacker node drops the interrupted data packets with a certain probability. Greyhole attack is more difficult to detect as compared to black Hole attack in which the attacker node drops the received data packets with certainty.

3.) Wormhole

In this type of attack, two attacker nodes are present in the network which creates a tunnel. An attacker node receives the data packet at one point in the network and forward it to another attacker node. The tunnel exist between two attacker nodes is called wormhole. Wormhole places the attacker nodes in a very powerful position compared to other nodes in the network. The attacker node could use this position in a number of ways. In wormhole attack, it copies the data packets at one location and replays them without any changes at different location or within the same network.

4.) Sinkhole attack

In this attack, an attacker node provides wrong routing information in order to presents itself a specific node and hence receives the whole network traffic. Once receiving the whole network traffic complicated packet traffic it modifies secret information such change the data or drop the packet to make network complicated. An attacker node tries to attract the secure data from all neighboring nodes.

legitimate node. This type of attack is known as Sybil attack.

In Sybil attack, an attacker may create multiple fake identities. The attacker node may present itself as a large number of nodes instead of a single node. These fake identities are called Sybil nodes. This attack may cause a lot of data packets to be routed towards the fake nodes.

5.) Rushing Attack

Rushing attack can also be known as a denial of service attack or novel attack. In rushing attack, an attacker node receives a route request packet from the source node and immediately flood it throughout the network before other nodes which also receive the same route request packet. These attacks are generally against the on-demand routing protocols.

6.) Sybil Attack

In MANET the transmission medium for data packets is air and they doesn't have a centralized node to control the network. So the routing is based on some unique node address. This property of MANET can be used by the attacker for using fake identities. This means the attacker can either use a random identity or the identity of

7.) Jellyfish Attack

Jellyfish attack generally comes under the passive attack and also a type of denial of service attack. Jellyfish attack produces delay during the transmission and reception of data packets in the network. This attack is difficult to detect. Jellyfish attack is same as the blackhole attack with the only difference that is in blackhole attack attacker drops all data packetsbut in jellyfish attack node produces delay during forwarding of data packets.

Attacks at transport Layer

1.) Session Hijacking

In this type of attack, the attacker node tries to obtain secure data which could be password, secret key etc. and other useful information. An attacker creates a fake ip address and obtains the correct sequence number. This attack aims at collecting secret data about the nodes.

Node 2 become confused and send lost ACK to resynchronise

Fig : Session Hijacking

Attacks at Application Layer

1.) Repudiation attack

Repudiation means denial of transmitting or receiving the data packet. In this type of attack, either a sender may deny that he send the packet or a receiver deny that he receives a data packet.

B. Passive Attacks

A passive attack is an unauthorized listening to the network. It does not change the data transmitted within the network. A passive attacker obtains the data exchanged in the network without disturbing the operation of communication.

Passive attack is difficult to detect because of the network operation itself does not get affected. These attacks can be controlled by using powerful encryption algorithm to encrypt the data which is being transmitted.

Passive attacks are further classified into two categories:

1.) Eavesdropping

Eavesdropping is an interception and reading of messages by an unauthorized receiver. The unintended receiver can easily intercept the communication which is on wireless medium by tuning up to proper frequency. The main aim of eavesdropping which is kept secret during the communication. The secret information can be private key, public key, password.

Fig : Eavesdropping

2.) Traffic Analysis

In this attack, for an attacker data packets and traffic patterns both are important. The attacker can obtain the confidential information about network topology by analyzing the traffic pattern. Using traffic analysis attack, an attacker may find about network topology, location of nodes, source and destination nodes.

III. ATTACK DETECTION AND PREVENTION TECHNIQUES TABLEI. BLACKHOLE DETECTION/PREVENTION TECHNIQUES Approach Description Limitations

Approach	Description	Limitations
Reply Packet Authenticity	Verifying the authenticity of node sending reply	Longer time delay
[22]	packet andwait for	
	reply packets	

	from more			
	than two			
	nodes			
	Every node			
	Livery node			
	keeps two			
	additional			
	small-sized			
	tables: one to			
	keep last-	The malicious		
	nacket-			
Last Daakat	socuence	to the channel		
Last-racket-	sequence-			
Sequence-	numbers sent	and update the		
Numbers	to every node	tables for the		
[23]	and second	last packet		
	to keep last-	sequence		
	packet-	number		
	sequence			
	numbers			
	manifold			
	received			
	from every			
	node			
	Using			
	common			
	neighbors.			
	acting as			
	watchdogs			
	to detect			
	attack and			
	discover a			
	discover a	Adds some		
Common	new route if	Adds some		
Common	new route if there is a	Adds some routing		
Common Neighbor	new route if there is a Black hole	Adds some routing controloverhead		
Common Neighbor Listening	new route if there is a Black hole present	Adds some routing controloverhead and works in		
Common Neighbor Listening [25]	new route if there is a Black hole present between	Adds some routing controloverhead and works in specific		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes;	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25] Information (DRI) and	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table	Adds some routing controloverhead and works in specific circumstances		
Common Neighbor Listening [25] Information (DRI) and Cross	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross	Adds some routing controloverhead and works in specific circumstances with more percentage of		
Common Neighbor Listening [25] Information (DRI) and Cross checking	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request (FREQ) and	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request (FREQ) and Further	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request (FREQ) and Further Reply	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request (FREQ) and Further Reply (FREP).	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		
Common Neighbor Listening [25] Information (DRI) and Cross checking using FREQ and FREP [26]	new route if there is a Black hole present between source and destination by identifying and isolating cooperative Black hole nodes; This approach uses modified version of AODV; It introduces DRI table and cross checking using Further Request (FREQ) and Further Reply (FREP). Works better	Adds some routing controloverhead and works in specific circumstances with more percentage of Black hole nodes		

	similar kind			
	0I approaches			
	The			
	intermediate			
	node			
	requests its			
	next hop to			
	send a			
	confirmation message to the source. After two concernition			
Route				
Confirmation	receiving	two consecutive		
Request-	both route	nodes are		
Keply [27]	reply and	mancious		
	confirmation			
	message, the			
	source			
	determines			
	of nath			
	according to			
	its policy			
	Analyzing			
	differences			
Dynamic	between	False positives		
Training	sequence			
Method [27]	numbers of			
	received			
	Check path			
	containing			
	repeated next			
	hop node to	Increases average end-to		
SAODV [28]	destination;			
	if there is no	end delay		
	repeated			
	node, select			
	To keep			
	information			
AODVSABH [29]	of sequence			
	number of			
	destination			
	node and	Higher number		
	addresses of	of control		
	intermediate	packets: delav		
	nodes in	in route		
	KREQ; when	discovery		
	a node	process in some		
	RREP it	scenarios		
	should check			
	the address			
	of the sender			
	in its local			
	table			
MOSAODV	After	Rise in average		
[30]	receiving	end-to-end		

	C DDED	
	first RREP,	delay and
	the source	normalized
	node waits	Routing
	for a specific	overhead:
	time period:	Houristic
	for this	
	for this	approach
	period source	
	node saves	
	all received	
	RREP	
	massage in a	
	tables Carrie	
	table; Source	
	node	
	discards all	
	RREPs	
	having verv	
	high	
	ngn	
	sequence	
	number	
	After	
	specific time	
	interval a	
	threshold	
	sequence	
	number is	Increases
	number is	
	Calculated; II	average end-to
DPRAODV	RREP has	end delay and
[31]	sequence	normalized
	number	routing
	greater than	overhead
	the threshold,	
	it is	
	considered as	
	a malicious	
	nodo	
	To ale no de	
	Each node	
	maintains an	
	estimation	
	table	
	containing	
	status	
	information	
	about nodes	
	within the	
	nower range	Cannot detect
	Ono nodo	cooperative
Vater	datasta	Black holes; the
voung	detects	voting system
System [33]	suspicious	is not
	node and	considered
	notifies that	good
	to naighbors	goou
	to neighbors.	
	The nodes	
	The nodes cooperatively	
	The nodes cooperatively vote for the	
	The nodes cooperatively vote for the consideration	
	The nodes cooperatively vote for the consideration	
	The nodes cooperatively vote for the consideration of the	
	The nodes cooperatively vote for the consideration of the suspicious	
	The nodes cooperatively vote for the consideration of the suspicious node as	

Approach	Description	Limitations			Trust-based	
	It uses two	Assumption			approach that uses	
	strategies for	is made that			passive	
	detecting	nodes have			acknowledgement	
	misbehaving	no energy			as it is simplest;	
Channel-	nodes: hop-by-	constraints			Uses promiscuous	
aware	hon loss	and source			mode to monitor	
Detection	observation by	and			the channel that	
Algorith	next hop	destination			allows a node to	It is used only
m [41]	(downstream	know the			identify any	for detecting
111 [41]	(downstream node) and traffic	forwarding			transmitted	Packet
	monitoring by	noth and IDa			nackats irrelevant	forwarding
		paul allu IDs			packets intelevant	mishehewier
	previous nop	of forwarding			of the actual	misbenavior,
	(upstream node).	nodes.			destination that	monitoring
	Before sending				they are intended	overall traffic
	any block, source			ST-	for; thus, a node	would be a
	sends a prelude			AODV	can ensure that	better choice
	message			[40]	packets it has sent	than
	todestination to				to a neighboring	monitoring
	alert it; neighbors				node for	only one
	monitor flow of				forwarding are	node's
	traffic; after end				indeed forwarded;	requests
	of transmission,				routing choices	
	destination sends				are made based on	
Proludo	postlude message				trust as well as	
and	containing the	Analysis of			hop-count, such	
anu Dostludo	number of packets	the proposed			that the selected	
r ostiuue Mossogin	received. If the	solution has			next hop gives the	
wiessagin	data loss is out of	not been done			shortest trusted	
g [30]	tolerable range,				path.	
	initiate the process				One-way hash	
	of detecting and				code is added to	
	removing all				the data packets;	
	malicious nodes				when receiver	
	by aggregating				receives packet, it	
	response				checks the	
	frommonitoring				correctness of it	
	nodes and the				by finding match	
	network				of hash code; for	
	Each node				correct data	
	involved in a				packet, it sends	The solution
	session must			Simple	ACK to sender	is not tested
	create a proof that			acknowle	which checks the	with higher
	it has received the			dge-ment	ACK is received	density of
Creating	message; When			and flow	within specific	nodes and
Proof	source node			conservati	time; for incorrect	adds to the
Algorith	suspects some			on [2]	packet receiver	routing
m. Check	misbehavior,				sends	overhead.
้นอ	Checkup	May not			CONFIDENTIAL	
Algorith	algorithm checks	detect all			ITY LOST	
m and	intermediate	Malicious			through	
Diagnosis	nodes:	nodes			intermediate	
Algorith	According to the				nodes and sender	
m	facts returned by				switches to	
[35 36]	the Checkup				alternative	
[00,00]	algorithm it				intermediate node	
	traces the				to send	
	malicious node by				Packets	
	Diagnosis			End-to-	Source and	May not work
	algorithm			end	destination nodes	with many
	uigoriunn	1	J	chu	acommuton nouco	,, icii iliuli y

Checking	perform end-to-	Malicious
[37]	end checking to	nodes; nodes
	determine whether	must be
	the data packets	capable of
	have reached the	finding their
	destination or not.	positions
	If the checking	when they
	fails then the	enter the
	backbone	network
	network initiates a	
	protocol for	
	detecting single or	
	cooperative	
	malicious nodes	

IV. CONCLUSION AND FUTURE WORK

The dynamic nature of MANET makes it vulnerable to attacks at different layers. One of the mostly attacked MANET layer is network layer. So, there is a need for secure environment for transmission of secure communications. In this paper, I have done a survey on network layer attacks and their possible detection mechanism. In future there can be several ways to defeat these protection mechanisms. So this is a further more potential area of research in which more powerful detection mechanisms can be invented.

REFERENCES

- Fatima Ameza, Nassima Assam and Rachid Beghdad, "Defending AODV Routing Protocol Against the Black Hole Attack", International Journal of Computer Science and Information Security, Vol. 8, No.2, 2010, pp.112-117.
- [2]. Nital Mistry, Devesh C. Jinwala and Mukesh Zaveri, "Improving AODV Protocol against Blackhole Attacks", International Multiconference of Engineers and Computer Scientists 2010, vol. 2, March 2010.
- [3]. Payal N. Raj and Prashant B. Swadas,"DPRAODV: A dynamic learning system against black hole attack in AODV based Manet", International Journal of Computer Science Issues, Vol. 2, Issue 3, 2010, pp: 54-59.
- [4]. Hoang Lan Nguyen and Uyen Trang Nguyen, "Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks", International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, April 2006, pp. 149-149
- [5]. Rutvij H. Jhaveri, Ashish D. Patel, Jatin D. Parmar and Bhavin I. Shah, "MANET Routing Protocols and Wormhole Attack against AODV", International Journal of Computer Science and Network Security, vol. 10 No. 4, April 2010, pp. 12-18.
- [6]. N. Shanthi, Dr. Lganesan and Dr.K.Ramar, "Study of Different Attacks on Multicast Mobile Ad hoc Network", Journal of Theoretical and Applied Information Technology, December 2009, pp. 45-51.
- [7]. Abhay Kumar Rai, Rajiv Ranjan Tewari and Saurabh Kant Upadhyay, "Different Types of Attacks on Integrated MANET-Internet Communication", International Journal of Computer Science and Security, vol. 4 issue 3, July 2010, pp. 265-274.
- [8]. Jakob Eriksson, Srikanth V. Krishnamurthy, Michalis Faloutsos, "TrueLink: A Practical Countermeasure to the Wormhole Attack in Wireless Networks", 14th IEEE International Conference on Network Protocols, November 2006, pp.75-84.
- [9]. Mahdi Taheri, Dr. majid naderi, Mohammad Bagher Barekatain, "New Approach for Detection and defending the Wormhole Attacks in Wireless Ad Hoc Networks", 18th Iranian Conference on Electrical Engineering,, May 2010, pp. 331-335.

- [10]. Dang Quan Nguyen and Louise Lamont, "A Simple and Efficient Detection of Wormhole Attacks", New Technologies, Mobility and Security, November 2008, pp. 1-5.
- [11]. Viren Mahajan, Maitreya Natu, and Adarshpal Sethi, "Analysis of Wormhole Intrusion Attacks in MANETs", Military Communications Conference, November 2008, pp.1-7.
- [12]. Maria A. Gorlatova, Peter C. Mason, Maoyu Wang, Louise Lamont, Ramiro Liscano, "Detecting Wormhole Attacks in Mobile Ad HocNetworks through Protocol Breaking and Packet Timing Analysis", Military Communications Conference, October 2006, pp. 1-7.
- [13]. Mani Arora, Rama Krishna Challa and Divya Bansal, "Performance Evaluation of Routing Protocols Based on Wormhole Attack in Wireless Mesh Networks", Second International Conference on Computer and Network Technology, 2010, pp. 102-104.
- [14]. Yih-Chun Hu, Adrian Perrig, and David B. Johnson, "Wormhole Attacks in Wireless Networks", IEEE Journal on Selected Areas in Communications, vol. 24 no. 2, February 2006, pp. 370-380.
- [15]. W. Weichao, B. Bharat, Y. Lu and X. Wu, "Defending against Wormhole
- [16]. Attacks in Mobile Ad Hoc Networks", Wiley Interscience, Wireless Communication and Mobile Computing, January 2006.
- [17]. L. Qian, N. Song, and X. Li, "Detecting and Locating Wormhole Attacks in Wireless Ad Hoc Networks Through Statistical Analysis of Multipath," IEEE Wireless Communication. and Networking Conference,
- [18]. I. Khalil, S. Bagchi, N. B. Shroff," A Lightweight Countermeasure for the Wormhole Attack in Multihop Wireless Networks", International Conference on Dependable Systems and Networks, 2005.
- [19]. L. Lazos, R. Poovendram, C. Meadows, P. Syverson, L.W. Chang, "Preventing Wormhole Attacks on Wireless Ad Hoc Networks: a Graph Theoretical Approach", IEEE Communication Society, WCNC 2005.
- [20]. L. Hu and D. Evans, "Using Directional Antennas to Prevent Wormhole Attacks", 11th Network and Distributed System Security Symposium, pp.131-141, 2003.
- [21]. L.Lazos, R. Poovendran, "Serloc: Secure Range-Independent Localization for Wireless Sensor Networks", ACM Workshop on Wireless Security, pp. 21-30, October 2004.
- [22]. W. Wang, B. Bhargava, "Visualization of Wormholes in sensor networks", ACM workshop on Wireless Security, pp. 51-60, 2004.
- [23]. Mohammad Al-Shurman, Seong-Moo Yoo and Seungjin Park, "Black Hole Attack in Mobile Ad Hoc Networks", ACMSE, April 2004, pp.96-97.
- [24]. Anu Bala, Munish Bansal and Jagpreet Singh, "Performance Analysis of MANET under Blackhole Attack", First International Conference on Networks & Communications, 2009, pp. 141-145.
- [25]. Latha Tamilselvan and Dr. V Sankaranarayanan, "Prevention of Blackhole Attack in MANET", The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications, 2007, pp. 21-26.
- [26]. Geng Peng and Zou Chuanyun,"Routing Attacks and Solutions in Mobile Ad hoc Networks", International Conference on Communication Technology, November 2006, pp. 1-4.
- [27]. S. Lee, B. Han, and M. Shin, "Robust Routing in Wireless Ad Hoc Networks", International Conference on Parallel Processing Wowrkshops, August 2002.
- [28]. Satoshi Kurosawa, Hidehisa Nakayama, Nei Kato1, Abbas Jamalipour, and Yoshiaki Nemoto1," Detecting Blackhole Attack on AODV-based Mobile Ad Hoc Networks by Dynamic Learning Method", International Journal of Network Security, vol..5 no..3, Nov. 2007, pp.338–346.
- [29]. Nadia Qasim, Fatin Said, and Hamid Aghvami, "Performance Evaluation of Mobile Ad Hoc Networking Protocols", Chapter 19, pp. 219-229.
- [30]. G.S. Mamatha and S.C. Sharma, "A Robust Approach to Detect and Prevent Network Layer Attacks in MANETS", International Journal of Computer Science and Security, vol. 4, issue 3, Aug 2010, pp. 275-284.
- [31]. Preetam Suman, Dhananjay Bisen, Poonam Tomar, Vikas Sejwar and Rajesh Shukla, "Comparative study of Routing Protocols for Mobile Ad- Hoc Networks", International Journal of IT & Knowledge Management, 2010.